Model	Perspective	Strengths	Weaknesses	Opportunities	
RangeShifter	EXPERT	 Flexible platform combining several demographic and dispersal models within a user-friendly framework. Suitable for both theoretical and applied models. Comprehensive manual and tutorials. As an individual-based model, variation between individuals in dispersal behaviours can be included, and their eco-evolutionary dynamics investigated. The mechanistic dispersal model SMS allows for dispersal through heterogeneous landscapes. 	 Complex models require many parameters, which can interact in ways which are not always immediately obvious. Requires programmer support, and thus cannot be adapted by users to add functionality. Explicit climate dependencies not yet incorporated. 	 Dynamic landscapes and more flexible implementation of variable dispersal traits and their underlying genetics to come in version 2 Potential to couple with socio-economic land-use models to implement dynamic models of environmental change. 	
	PARTICIPANT	 GUI (graphical user interface) Good for assessing 'what if situations' Easy to use, once understood Relatively few simple inputs that allow large flexibility, producing lots of info from output Lots of options Mechanistic, individual based Simple, focused Use of SMS, seems to make the movement models more robust Spatially explicit Stochastic Refined variables Possibility of running sensitivity analyses Establishes framework for repeatability 	 Large datasets Parameter choice is subjective Requires a lot of ecological knowledge about species -> using best-guess scenarios may not be reliable for decision-making Single species, no interspecies interactions Computationally intensive (stochasticity) Expensive on output Would a statistical analysis need to produce so much data? Lack of dynamic landscapes No uncertainty estimates Interface not very clear Reduced number of feedback processes between environment and species, difficult to model additional processes and dynamics 	 Real life species, real life situations e.g. conservation priorisation and management Incorporating genetic relatedness of many individuals dispersing together (e.g. seeds with animal dispersers) Incorporating land use change Look at how a species would behave in a certain environment, then comparing with real data to understand the effect of competition Set a modelling standard to cross-compare studies 	
Condatis	EXPERT	 Flexible and powerful application which is quick and easy to use Tool for landscape scale studies of directional connectivity over successive generations of species Can pick out the most effective sites for habitat creation, test climate change resilience or run a number of directly comparable colonisation scenarios Works particularly well for habitats that are well- defined and patchy and at a scale that will require several generations to colonise Can work with habitat coverage map and little data on species' traits. 	 Movement is considered between source and target, multidirectional movement requires user to run multiple specifications If the area of interest is very small (roughly the distance required to colonise habitat within one generation) then results are unlikely to be meaningful Assumes all cells in the matrix between habitat patches to be of uniform quality. 	 Can be used to prioritise sites for restoration based on maximising improvements in connectivity via the least number or least cost sites Potential to link with climate envelope models, climate change projections, ecosystem service models Could be developed into a web application More nuances of species' life history, dispersal and gradations of habitat quality could be developed. 	

Challenges

- Obtaining parameter estimates for applied models of real species
- Understanding how climate variability (i.e. weather) affects key demographic and dispersal processes.

- Cross-model comparison difficult within programme
- Availability of data for parameters, particularly dispersal
- Hard to learn
- Classifying dynamic landscapes
- Multispecies competition, e.g. invasion and community assembly
- Getting appropriate parameters when using SMS
- Sensitivity might be an issue
- Make it more relevant for plant movement
- Plugging external models as components to e.g. reproduce feedbacks
- Platform for coupling models
- Species specific parameters may not be known
- Preparation of input data requires GIS knowledge.

	PARTICIPANT	 Seems quick and easy Simple, answers one question Prioritisation Not a large data requirement e.g. regarding species Large-scale Policy-oriented Climate change relevance Support decision-making at strategic large scales Easy to use, could be used by stakeholders Graphical Idea of flow and ecological conductance, easily interpretable theory Large scales shows the effects of interventions 	 One habitat type, one species, one metric of benefit Limited to questions of connectivity Need good quality landscape data Doesn't include habitat mortality estimates, e.g. crossing a road in the matrix may have higher risk than farmland Demands to prioritise a lot Unidimensional output One point, one target Slow at higher than 20 tc grid 	 Helping develop corridors for conservation Helping predict movement of populations with changing climate Build and integrate with a spatial optimization between different present habitats Already being used by some NGOs It has an intuitive interface, so will probably be used widely Has it been validated? Combine with multiple GIS layers Interesting dissertation project
FEARLUS-SPOMM	EXPERT	 Flexible and highly-configurable simulation environment Agents (representing land-based businesses) use cognitively-plausible decision-making algorithm (case-based reasoning (CBR) 'lite') Heuristic algorithms for decision-making optional Reasonably well published / established model (and submodels) Explicit simulation of policy agent Complex dynamics of species and social spaces can be captured Species interactions can be configured Extensible if you have the coding expertise Open source and freely available 	 With great flexibility comes great numbers of parameters, switches, buttons and dials Built on unsupported ObjC-Swarm, the installation of which is not a trivial exercise Not at all user friendly (even with the documentation there are manuals) and won't ever be so When using CBR, agents need time to learn this can affect dynamics and make experiments difficult to set up 	 Can explore various options for managing biodiversity in a landscape through incentivisation of land managers Versions of the code exist (but have not yet been used professionally) allowing more functionality (e.g. feedback from species occupancy to yields, uncertainty in yields, XML output). Sufficiently configurable that climate change and species migration scenarios could be explored
	PARTICIPANT	 Adds human dimension to ecological models Complex and specific Implements behavioural aspects ABM in general: Highly versatile A lot of support and history of use JASSS journal Good for various simulations of human decisionmaking Sensible approach to modelling human behaviour Explicit assumptions Seemingly the best expert method to model and verify human interactions Heterogeneity Feedback Time dependency Emerging patterns Ability to model complex systems Powerful predictor integrating society and environment 	 Human dimension-making difficult to represent Human behaviour and morals - money may not be main driver for a decision Potential complexity and difficulty for non-programmers ABM in general: Confidence in output Connection between ABM and theory Dynamics/interactions are poorly understood - poorly modelled? The models appear to be largely abstracted from reality due to the limited access to high quality empirical data. This makes it difficult to trust the result. What are the variables of interest? How complex is too complex? Need lots of training and skills in e.g. programming 	 Input social science theory in environmental modelling Cross-disciplinary, brings research together Better ways of taking into account human impact in ecology and conservation efforts Understand means e.g. incentivising farmers to promote biodiversity ABM in general: Flexibility between disciplines, so incorporating social science Model assumptions can be easily verified and rejected Huge opportunities to increase interdisciplinary communication, if social scientists, ecologists and modellers can be brought to the same table Simulations -> huge datasets Emergence Mix qualitative and quantitative Mix disciplines, e.g. ABM models and connectivity studies for conservation

- Multiple interaction and their interaction, especially considering that the artificial construction of one habitat might destroy another
- Promote it so becomes widely used
- Different species might not be resilient to climate change, which means policy oriented measures for a number of species might have negative impact on other ones
- Incorporating different layers of spatial data
- Limited to one habitat types
- Will it present enough info to be useful?
- Programming expertise typically needed even to configure a run
- Configuring a run requires a lot of thought before the scripts to set it up are written
- Data to configure empirical cases typically lacking
- Analysing the output from the model is challenging due in part to the potential volume of it, but also to the multiple types it has

- Empirical data availability
- Coupling itself is difficult
- A lot of data needed for validation
- Generally, fit to data not only measure of validation -> context dependent
- Deciding which factors to not include in agents' decision-making processes

ABM in general:

- Obtaining data for empirical ABM
- Designing code for emotion and opinion
- Fit to data vs. ontology
- Social science is not well executed and explained for ABM incorporation
- How to increase social science appetite for understanding ABMs (better explanation in journal articles? strategic partnerships and training?)
- Models and social scientists speaking different language, no common ground
- Describing the system dynamics and processes is not easy and well formalised
- Summarising info
- Explaining reasoning behind it and following protocols